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P O S T C R I T I C A L  R E G I M E S  IN T H E  N O N L I N E A R  P R O B L E M  OF V O R T E X  

M O T I O N  U N D E R  THE F R E E  S U R F A C E  OF A W E I G H A B L E  F L U I D  

V. P. Zhitnikov,  N .  M. Sherykhalina,  and O. I. Sherykhal in UDC 532.5 

An improved Levi-Civita method in which the singularities of the desired function are taken into 
account by introducing terms containing power singularities is proposed. Results of numerical 
analysis of the nonlinear problem of a vortex in a bounded flow of an ideal weighable fluid 
(Fr > 1) are given. The following limiting flow regimes are studied: the Stokes waves with one 
and two crests, emergence of a critical point on the surface, and the detachment of a vortex 
from a soliton and a uniform flow. It is shown that nonperiodic waves can form in a local zone 
in the vicinity of the critical point. 

Flow around a hydrofoil can be modeled by flow around a point vortex provided its dimensions are 
small compared to the distances to the bot tom and free surface. This problem was studied in [1-6]. The 
results obtained in the present s tudy make it possible to describe qualitatively soliton-type solutions for 
postcritical regimes (Fr > 1). Solutions that  can yield the limiting solutions with critical points on the free 
surface (of the Stokes-wave type with a surface break that  forms an angle of 120 ~ or 360 ~ or without a break) 
are found. 

1. F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the problem of a vortex of intensity F which is 
located at the point A under the free surface in a bounded flow of an ideal weighable fluid (Fig. la).  The 
acceleration of gravity g is directed vertically downward. The  velocity is zero at the critical point F (for 
F > 0, this point lies above the point A), h is the undisturbed thickness of the flow, and V0 is the velocity at 
infinity. The  flow pa t te rn  is symmetric about  the y axis. The  flow is assumed to be potential and solenoidal; 
therefore, we seek a solution of the problem in the form of an analytic function of complex variable (complex 
potential  w(z)  [6]). In this case, the complex conjugate velocity at any point z = x + i y  of the flow is obtained 
by differentiation V -- dw/dz.  To determine w(z) ,  it is necessary to solve a boundary-value problem. The 
boundary  conditions for the function w(z)  are the impermeabili ty conditions Im w = 0 on BD and Im w = Q 
on CD (Q = hVo is the fluid flow rate in the jet).  

Since the free-surface shape is unknown, a solution can be sought for in the parametric form w(~) and 
z(~), where ~ is the parametric variable, whose domain is known and can be assumed, for example, to be 
a semicircle of unit radius in the complex plane (Fig. lb).  The  analytic function z(~) is also found from a 
boundary-value problem in which y -- Im z = 0 at the rectilinear boundary BD and the Bernoulli equation 

(V/Vo) 2 + 2y/(Fr2h) = const = 1 + 2/Fr  2, Fr -- V o / x / ~  (1.1) 

is satisfied at the free surface CD. 
The  dependence of the complex potential  w on ~ can be writ ten in the form [5] 

w(~) - 2hVo In 1 + r r (~ - ip)(~ + i /p )  
7r ~ + ~ In -- . (1.2) 

( 4 + i P ) ( ( i / p )  
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Fig. 1 

The complex velocity dw/dz is equal to zero at the critical point F (( = iq). Hence, with allowance 
for (1.2), we obtain 

dw 2 2 + 7p(1 - p~) i - 4 2 = 0, 7 = " (1.3) 
= 2 + ; f f ( T C  + 1) hV0' 

~ - [2  + 2p 4 - ^/p(1 - p2)] + 2(1 + p2) l x / ~ -  p2 V/1 _ p 2  _ .yp 
(1.4) 

q = 4P 2 + 7p(1 - p2) 

2. M e t h o d  o f  D i r e c t  C o n f o r m a l  M a p p i n g .  The  problem is solved by the improved Levi-Civita 

method with allowance for singularities [7, 8]. 
We now seek the function z(~) in the form of a sum of the power series and certain functions that  take 

into account the specified singularities at the points ~ = -4-1 and ( = +i:  

z(() = (2h/Tr)[zo(() + zl(() + zo(() + z3(()], (2.1) 
oo 

where z0(() = in ((1 + ( ) / (1  - ( ) )  is a function that  maps the semicircle onto a band, zl (() = E C2m+1 (2m+1 
m = 0  

is the power series whose coefficients are determined so as to satish." the Bernoulli equation (1.1), z2(() = 
A1 [(1 - ( )a  - (1 + ()a] is a function that  takes into account the singularities of the solution z(()  for ( = 4-1, 
and z3(() = iA2[((1 + i~)/2) 2/3 - ((1 - i~)/2) 2/3] is a function that  takes into account the singularities at 
the break point on the free surface (~ = i). The  parameter  a is determined from the transcendental Stokes 

equation 

7r ( 7 r )  1 (0< a < 1). (2.2) 
= F r  

3. S o l u t i o n  in T e r m s  o f  t h e  J o u k o w s k i  ~ n c t i o n .  As the studies have shown, the higher-order 
singularities of the solution must be taken into account in some cases. It is, therefore, convenient to seek a 
solution in the form of the Joukowski function 

w = O + iT = iln ( ~--o dw~dz ]' (3.1) 

where 0 is the angle of slope of the velocity vector to the x axis. Equation (1.1) plays the role of a boundary 
condition to determine the function w(() on the free surface. The following boundary conditions are formu- 
lated on the other sections of the boundary: 0 = 0 on AB, BD, and FC and 0 = zr on AF (Fig. la) .  In this 
case, the conformal mapping of ( onto z is performed by numerical integration 

1 / dw 
z =  d~. ~00 e/"~ ( - ~  -) (3.2) 

We write w(() in the form of the sum 

=  o(C) + + (3.3) 

Here 
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wo(O = i ln ((2 + q~)(p2~2 + 1) (3.4) 
((2 + p2)(q2~2 + 1)' 

where wo(() is the Joukowski function for a similar problem of a weighable fluid [5]); 

~ 1 ( 0 = i 1 - ( 2  ~ C  
2 2rnE 

m=O 

is the power series into which the factor (1 - (2)/2 is introduced to satisfy the condition wl(1) = O; 

( _ ~ ) ~  . / 1 -  (-2 \2~ ( ' 1 ,  (2 ~+1  
w2(O = i B l _ _ _ _  + z B 2 [ - - - ~ )  + i B a \ - - - ~ )  , (3.5) 

where 0;2(~) is a function that  takes into account the singularities of the solution ~ ( 0  for ( = 1 and involves 
higher-order terms; 

i 1 + (  2 1 + ~  2 3 
~3(~) = ~ In ~ + iC1 [ ( - - - - ~ )  - 1 ] ,  (3.6) 

where w3(0 is a function that  takes into account the singularities at the break point on the free surface. 
Substituting (3.3) into (1.1) and equating terms of the same order as ( --+ 1, we arrive at Eq. (2.2) 

and determine the coefficients B2 and B3 for ~: 

B2 = B~(3/2) cot 2(air/2), B3 = aB1. (3.7) 

Substituting (3.3) into (1.1) for ~ --* i and equating terms of the same order, we obtain 
o o  

z [ ( )  ( T1 ~ -C1 + d2m(_l)m 1 3 1 = = ~ In ~ Fr + in 1 - 1 - p2 , 
m=,  (3.8)  

(/3 + l)(zr/2) cot (/3zr/2) = I/v/-3. 0 < /3  < I. 

4. N u m e r i c a l  So lu t ion .  The problem reduces to Eq. (1.1) solved by the collocation method [7, 8]. 
In the infinite sum zl in Eq. (2.1), the number of terms N is finite, and equality (1.1) is satisfied at the 
discrete points am = 7rm/(2N), where m = 1, N. The resulting N nonlinear equations form a system solved 
by the Newton method with a step chosen [8] with the use of the parameters C~m+,, m = O, N - 4, A1, As, 
and Ft. This technique is also applied to solve the problem in the case where the function (3.2) is used. The 
error is estimated according to the Runge rule by comparing the values of the parameters (for example, the 
Fr number, the coordinates of the point C, etc.) obtained for successively increasing N and also with the use 
of the maximum residual Amax of Eq. (1.1) calculated at intermediate points between the collocation nodes 

O" m . 

To verify the developed methods of analysis, we solved the problem of a solitary wave with the Stokes 
singularity [8-11]. This solution is obtained for "y = 0. 

The following three techniques of solving the problem were compared: a solution is sought for in the 
form of the function z ( 0  (2.1) or w ( 0  (3.3) with allowance for only the principal terms of the singularities 
(/32 = B3 = C1 : 0) and with the use of expressions (3.5) and (3.6). The Fr number and other parameters 
were calculated for N = 5-1280. Analysis of the results shows that  the maximum residual of Eq. (1.1) can 
be used to estimate the error in determining the Fr number. In a parametric study, this enables one to avoid 
lengthy calculations connected with the increase in N at each calculation point. 

It follows from the numerical experiments that  the first two techniques give close results in determining 
the Froude number and the error and its rate of decrease as N is twice. The maximum error in calculating 
the Froude number is AFr ~ 10 -7. 

Taking into account the coefficients B2, B3, and C1 and equalities (3.7) and (3.8) decreases the error 
by a factor of 4 and significantly improves the convergence of the method. In this case, the maximum error 
in determining the Froude number is estimated to be A ~  ~ 10 -12 according to the Runge rule. The results 
of the solution of the problem by the three techniques coincide up to the errors estimated for each technique. 
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Fig. 2 

We compare  the refined value of Fr ~ 1.290890455863, which was obtained by the Richardson scheme. 

with known results. The values of the Froude number  calculated in different studies are Fr ~ 1.290906 [9], 

Fr ~ 1.290889 [10], Fr ~ 1.29089053 [11], and Fr ~ 1.290890455 [8]. The  errors are 1 . 6 . 10  -5, 1 . 5 . 1 0  -6,  
7.5- 10 - s ,  and 8- 10 -1~ respectively. 

5. D i s c u s s i o n  of  R e s u l t s .  Figure 2 shows the 1/Fr  versus the ordinate YC of the point C (see Fig. 

1) for various vortex intensities ~/ [YC < 1 for 7 = 0.125, 0.25, 0.375, 0.5, and 0.625, YC > 1 for ~' = -0 .5 ,  
- 1 ,  -1 .5 ,  - 2 ,  - 3 ,  - 5 ,  - 6 ,  - 7 ,  - 8 ,  -10 ,  and -20 ,  and YC > 1 (the second solution) for "~ = 0, 1, and 2]. 
The x and y coordinates in the diagrams are normalized to h. The vortex is located at the height YA = 0.5. 

For ~ > 0, solutions with a trough (instead of a crest) exist in the region YC < 1. One can see that ,  for 
0 < 7 < 0.5, the curve ~ = const consists of two curves, one of which emanates  from the line Fr = c~ and 

ends on the line Fr = 1, and the other emanates  from the line Fr = 1 (the second solution) and comes to the 
curve a, which corresponds to the limiting regime of emerging the critical point F on the free surface. The  

free-surface shapes are depicted in Fig. 3a (curves 1) for 7 = 0.5 and YC = 0.82 (Fr = oo), 0.75, 0.65, and 

0.51. 
Formulas for calculation of the limiting regime of emergence from the critical point F on the free surface 

can be derived from (1.4) and (3.4) as q --* 1: 

_ p2~2 + 1 (5 .1)  P =  V/72+24 7, w 0 ( ~ ) = i l n  ( 2 + p 2  " 

We note that  the velocity at the point C is nonzero in this limiting case, i.e., when the critical point 
reaches the free surface, it disappears. Moreover, the flow corresponds to the two-sheeted Riemann surface, 

and the velocity vector changes its direction by an angle of 2~r in passing over the free surface through the 
point C. In the particular case, this flow occurs for Fr = ~ .  The  function w0 (5.1) is an exact solution of the 

problem. 
All the solutions considered have no Stokes singularity on the free surface; therefore, in calculations, 

the terms z3 and w3 are dropped in the corresponding sums (2.1) and (3.3). 
The  curves 7 = const < 0 (see Fig. 2; YC > 1) emana te  from the line that  corresponds to the limiting 

value of Fr = c~ (a vortex in a flow of a weightless fluid) and end on the limiting curve tha t  corresponds to 

a wave with the Stokes singularity (curve b in Fig. 2). The  corresponding free-surface shapes are shown in 

Fig. 3a (curves 2) for "y = - 0 . 5  and YC = 1.12 (Fr = oo), 1.3, 1.5, 1.7, 1.9, and 1.95. 
The  solution ? > 0 with crests on the free surface originates from the limiting regime of the Stokes-wave 

type (curve b in Fig. 2) and ends with the Stokes wave with two crests (curves for ~ /=  1 and 2 in Fig. 2; Fig. 

3b). A limiting curve that  corresponds to the regimes with two crests (curve c in Fig. 2) emerges when ~ = 0 
(YC = 1) and ends when it adjoins the extreme point of curve b and forms a new non-Stokes limiting regime 

with the critical point at the top of the crest without a break on the free surface (curve d in Fig. 2). Upon 
approaching this limit, waves form on the free surface the number  of which increases, and their ampli tude 

decreases (Fig. 3c). The value of ~, at which this limit is reached is the max imum value for this YA. When  

7 decreases, the distance between the crests increases (Fig. 3d). As "7 ---* 0, both  waves go to infinity, and a 
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uniform flow forms between them. 
The non-Stokes flow with the critical point at the top of the wave crest is calculated by formula (3.3), 

in which 

p 2 ~ 2 + 1  + 2 i t n  1 + ~ 2  wo(~) = i In ~2 + p------------~ - - - 7 ,  7.3 : W3 ~- 0 .  

In contrast  to (5.1), the point C is critical, but  the free surface remains smooth. 

To calculate the flow with two Stokes waves, one should take into account the term w3 similar to that  
in (3.6): 

w3 = g In 4 sin 2 ao + iC1 1 2~24 sin 2c~ 2o'0a0 + ~4 ~ _ 1 , 

which has a singularity at the circle point ~ = e ia~ whose position is determined in the calculation. 

The set of solutions of the problem of flow around a vortex is a three-parameter  family of curves. To 
s tudy the solutions in greater detail and show them in the form of a diagram, it is insufficient to use only the 
section with YA = 0.5 considered above. It is necessary to consider at least the sections with ~, = const. An 
analysis shows that ,  for "7 > 0, the curves 1 /Fr (yc)  are similar to those depicted in Fig. 2. Figure 4 shows 
of the parameters  for various YA corresponding to "7 = -0 .5 .  For YA ~< I, the curves emanate  from the line 
that  corresponds to the limiting value of Fr = c~ and end on the limiting curve of the Stokes-wave type. For 

a certain y~ > 1, the curves (for each YA) consist of two curves (for example, the curve YA ----- 1.25), one of 
which emerges from the line corresponding to Fr = cx~ and ends with the Stokes wave as is the case where 
YA ~< 1, whereas the other curve also originates from the line corresponding to Fr = ee (the second solution) 
and ends with the limiting regimes in which the vortex is separated from the soliton (curve a in Fig. 4) or 
uniform flow (curve b). When YA increases, the two solutions for Fr = ec merge and disappear, and the two 
curves coincide (the curve YA = 1.5 in Fig. 4). 
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The  free-surface shapes are shown in Fig. 3e for the Stokes-wave type for 7 = -0 .5  and YC = 1.82 
(YA = 0), 1.98, 2.16, 2.10, 1.823, and 1.63. These solutions correspond to the curve c (a wave with the 
Stokes singularity) in Fig. 4. It should be noted that  y c / h  = 1 + Fr2/2 for Stokes waves [see (1.1)], but for 
visualization, the curve c in Fig. 4 is shown in the form of two different curves c: and c2. 

We now pass to the problem of vortex separation (see Fig. 4) in which w = aV~ff'/(Tri)ln( is the 
complex potential,  if' = F/(aV~), a is the distance from the lower point of the vortex flow to the vortex, and 
V~ is the fluid velocity at the lower point. Using (3.3) for w0(() = - i - 2 1 n ~  - zr and w2 = 0, we find the local 
value of the Froude number Fr' = V o / v / ~  and obtain 

0 

~t = _ _1 ei~(() __ . 
7~ 

1 

We note that  the problem of closed circulatory flow was solved by Maklakov [12] for sufficiently large 
F r  I . 

Further,  using the known solution for a soliton on the free surface [8] in the form of the relationship 
Fr(V~/V0), we solve the nonlinear equation 

(V~)/Vo)3/2Fr(Vj/Vo) -= V/-~-/3/Fr '. (5.2) 

thereby finding a relation between the soliton and the vortex flow. It is noteworthy that Eq. (5.2) admits 
a solution provided ~/~//7' Fr' <~ 1. Otherwise, the vortex separates from the uniform flow. In this ease, 
V(~ = V0 and Vr = ~ Fr'. 

Figures 2 and 4 show solutions only for Fr ~> 1. Soliton-type solutions were also obtained by the 
methods considered above for Fr < 1 (see [3, 4]). However, since Eq. (2.2) has no solutions for Fr < 1, 
solutions exist only if the equalities A: = 0 and B1 = 0 hold, i.e., when the power singularities whose index 
lies in the range 0 < c~ < 1 are absent. In this case, the asymptotic behavior of the solution is determined 
by the next  solution of the transcendental equation (2.2) for 2 < ~ < 3, which is possible for all values of the 
Froude number. 

6. C o n c l u s i o n s .  The problem of a flow of a weighable fluid around a vortex has been studied 
numerically. The limiting flow regimes have been described. The solutions with waves on the fluid surface 
for Fr > 1 are of special interest; previously, the characteristic range of Froude numbers for these solutions 
was assumed to be Fr < 1 (subcritical regimes [4]). 
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Higher Educat ion and Fundamental Science in 1997-2000." 
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